凌思涛,男,汉族,1980年生,山东临沂人,中共党员,理学博士、博士后、副教授、硕士生导师。所属专业:计算数学。主要研究方向:数值代数。感兴趣的研究领域:四元数量子力学中的数值代数问题;随机算法及其应用;结构矩阵的特征值和结构线性系统的算法设计,及其在图像处理中的应用;广义逆和矩阵方程的扰动分析。2015.09-2015.11在扬州大学短期培训;2016.08-2017.08在新加坡国立大学数学系做访问学者。担任美国数学评论(Mathematical Reviews)评论员,江苏省计算数学学会理事。
主持国家级、省部级课题多项,包括国家自然科学基金青年项目(11301529)、国家自然科学基金数学天元基金项目(11226325)、中国博士后科学基金面上项目(2013M540472)、江苏省博士后基金资助项目(1302036C)、以及中央高校基本科研业务费专项金2项(2015QNA47、2012QNB22)。主持williamhill威廉希尔官网青年教师教改项目1项(2013Y35)。
一、教学:
承担本科《矩阵计算》,《计算方法B》,《计算机控制技术及应用》,《数值计算方法实践》,《高等数学》,《线性代数》,《概率统计实验》,硕士《数值分析》,《矩阵论》等课程的教学工作。
主持/参与项目:
主持在研williamhill威廉希尔官网教学研究项目:面向留学生的《计算方法B》英文课程教学研究与实践(2019YB32)
主持完成williamhill威廉希尔官网青年教师教改项目:背景驱动教学方法的研究与实践—以“计算机控制技术及应用”课程教学为例(2013Y35)
参与完成williamhill威廉希尔官网公共基础课教改项目:公共基础课《线性代数》课程建设的探索与实践(2013B05)
参与完成williamhill威廉希尔官网青年教师教改项目:基于创新人才培养的数学专业《最优控制理论》课程教学改革研究 (2001246)
指导完成在研校级大学生创新训练计划项目:一类区间线性系统的理论与算法(2016-2017)
教学成果获奖情况:
获得williamhill威廉希尔官网理学院青年教师教案比赛二等奖(2014)
参与的《线性代数》课程建设获得全国煤炭行业教育教学成果二等奖(2015)
参与的《抽象代数》课程获得williamhill威廉希尔官网精品课程 (2016)
参与的《抽象代数》精品课程建设获得全国煤炭行业教育教学成果三等奖 (2017)
发表的教学论文:
凌思涛,孙永征,侍红军,跨专业学习计算机控制技术课程的教学改革探索,学园,2015(15),59-60.
孙永征,侍红军,凌思涛,基于创新人才培养的最优控制课程教学改革与实践,学园,2014(7),12-13.
二、科研:
主持/参与项目:
主持完成国家自然科学基金青年项目:一类新型结构矩阵结构矩阵束特征问题的算法及其应用(11301529, 2014.01-2016.12)
主持完成国家自然科学基金专项项目:现代量子力学中两类四元数模型解的研究(11226325, 2013.01-2013.12)
主持完成中国博士后科学基金面上项目(2013M540472, 2013.09-2015.12)
主持完成江苏省博士后基金资助项目(1302036C, 2013.12-2016.12)
主持完成williamhill威廉希尔官网校科技基金项目:现代量子力学中两类四元数问题的算法研究(2012QNB22, 2012.01-2014.12)
主持在研williamhill威廉希尔官网校科技基金项目:分块矩阵线性系统的算法及应用(2015QNA47, 2015.01-2018.12)
主持完成williamhill威廉希尔官网人才引进启动项目:广义逆及Sylvester矩阵方程的扰动分析(2010.07-2012.06)
作为主要成员参加完成国家自然基金青年项目:结构矩阵多项式的实谱分解及其在模型修正中的应用(11201193, 2013.01-2015.12)
作为主要成员参加国家自然基金面上项目:结构矩阵多项式的理论与算法及其在图像识别中的应用(11771188,2018.01-2021.12)
研究成果获奖情况:
徐州市工业与应用数学学会科技论文二等奖 (2013)
代表性论文:
[1]Si-Tao Ling*, Zhi-Gang Jia, Xin Lu, Bing Yang, Matrix LSQR Algorithm for Structured Solutions to Quaternionic Least Squares Problem, Computers and Mathematics with Applications, 2019, 77, 830-845.
[2]Si-Tao Ling*, Ming-Hui Wang, Xue-Han Cheng, A new implementation of LSMR algorithm for the quaternionic least squares problem, Journal of Mathematical Physics, 2018, 59(7): 073510.
[3]Si-Tao Ling, Rui-Rui Wang, Qing-Bing Liu*, Perturbation analysis for the (skew) Hermitian matrix least squares problem AXAH=B, Annals of Functional Analysis, 2018, 9(4), 435-450.
[4]Si-Tao Ling*, Zhi-Gang Jia, Tong-Song Jiang, LSQR algorithm with structured preconditioner for the least squares problem in quaternionic quantum theory, Computers and Mathematics with Applications, 2017, 73: 2208-2220.
[5]Si-Tao Ling, Qing-Bing Liu*, New local generalized shift-splitting preconditioners for saddle point problem, Applied Mathematics and Computation, 2017, 302: 58-67.
[6]Zhi-Gang Jia, Si-Tao Ling, Mei-Xiang Zhao, Color Two-Dimensional Principal Component Analysis for Face Recognition Based on Quaternion Model, International Conference on Intelligent Computing (ICIC 2017: Intelligent Computing Theories and Application), Lecture Notes in Computer Science,vol. 10361,pp. 177-189.
[7]Tongsong Jiang, Xuehan Cheng and Sitao Ling*, An algebraic technique for total least squares problem in quaternionic quantum theory, Applied Mathematics Letters, 2016, 52: 58-63.
[8]Sitao Ling*, Musheng Wei, Zhigang Jia, Perturbation analysis for the matrix least squares problem AXB=C, Journal of Computational and Applied Mathematics, 2015, 273: 150-159.
[9]Sitao Ling*, Xuehan Cheng,Tongsong Jiang, Consimilarity of quaternions and coneigenvalues of quaternion matrices, Applied Mathematics and Computation, 2015, 270: 984-992.
[10]Sitao Ling*, Xuehan Cheng,Tongsong Jiang, An Algorithm for Coneigenvalues and Coneigenvectors of Quaternion Matrices, Advances in Applied Clifford Algebras, 2015, 25(2): 377-384.
[11]Tongsong Jiang, Ziwu Jiang, Sitao Ling*, An algebraic method for quaternion and complex Least Squares coneigen-problem in quantum mechanics, Applied Mathematics and Computation, 2014, 249: 222-228.
[12]Tongsong Jiang, Xuehan Cheng, Sitao Ling*, An Algebraic Relation between Consimilarity and Similarity of Quaternion Matrices and Applications, Journal of Applied Mathematics, vol. 2014, Article ID 795203, 2014.
[13]Zhigang Jia, Meixiang Zhao, Minghui Wang*, and Sitao Ling, Solvability Theory and Iteration Method for One Self-adjoint Polynomial Matrix Equation, Journal of Applied Mathematics, vol. 2014, Article ID 681605, 2014.
[14]Sitao Ling*, Zhigang Jia, Matrix iterative algorithms for least squares problem in quaternionic quantum theory, International Journal of Computer Mathematics, 2013, 90(3):727-745.
[15]Sitao Ling*, Xiangjian Xu, Tongsong Jiang, Algebraic Method for Inequality Constrained Quaternion Least Squares Problem, Advances in Applied Clifford Algebras, 2013, 23(4): 919-928.
[16]Tongsong Jiang, Sitao Ling*, Algebraic Methods for Condiagonalization Under Consimilarity of Quaternion Matrices in Quaternionic Quantum Mechanics, Advances in Applied Clifford Algebras, 2013, 23(2): 405-415.
[17]Tongsong Jiang, Sitao Ling, On a Solution of the Quaternion Matrix Equation AX-XB=Cand Its Applications, Advances in Applied Clifford Algebras, 2013, 23(3): 689-699.
[18]Zhigang Jia, Musheng Wei, Sitao Ling, A new structure-preserving method for quaternion Hermitian eigenvalue problems, Journal of Computational and Applied Mathematics, 2013, 239: 12-24.
[19]Sitao Ling, Tongsong Jiang, New method for general Kennaugh's pseudo- eigenvalue equation in radar polarimetry, Frontiers of Mathematics in China, 2012, 7(1): 85-95.
[20]Gang Wu, Yimin Wei, Zhigang Jia, Sitao Ling, Lu Zhang, Towards backward perturbation bounds for approximate dual Krylov subspaces, BIT Numerical Mathematics, 2013, 53(1): 225-239.
[21]Sitao Ling, Tongsong Jiang, Xuehan Cheng, Algebraic Method for Solving A Class of Quaternion Algebraic Riccati Equation, IEEE 9th International Conference on Fuzzy Systems and Knowledge Discovery, 2012, 2339-2342.
[22]Sitao Ling, Minghui Wang, Musheng Wei, Hermitian tridiagonal solution with the least norm to quaternionic least squares problem, Computer Physics Communications, 2010, 181: 481-488.
[23]Musheng Wei, Sitao Ling, On the perturbation bounds of g-inverses and oblique projections, Linear Algebra and its Applications, 2010, 433: 1778-1792.
三、个人荣誉
2015年度williamhill威廉希尔官网理学院“优秀”教职工
2013年度williamhill威廉希尔官网校级优秀班主任
2012年度williamhill威廉希尔官网院级优秀班主任
2012年度williamhill威廉希尔官网理学院“优秀”教职工
四、联系方式
Email: lingsitao2004@163.com
通讯地址:江苏省徐州市williamhill威廉希尔官网(南湖校区)英国威廉希尔唯一官网A314室
邮政编码:221116