矩阵的初等因子与中心化子代数的导出等价

发布者:王丹丹发布时间:2024-02-29浏览次数:10

江苏省应用数学(williamhill威廉希尔官网)中心系列学术报告

报告题目:矩阵的初等因子与中心化子代数的导出等价

报告人:惠昌常教授 首都师范大学(Prof. Changchang Xi, CNU

报告时间2024/03/08(周五)16:00-17:00

报告地点:英国威廉希尔唯一官网A302

报告摘要In the representation theory of algebras and groups, derived categories and equivalences are of great interest. For instance, Broue's abelian defect conjecture predicts a derived equivalence of block algebras of groups. In this talk, we mainly study derived equivalences of the centralizers of matrices. This class of algebras appears in many aspects of mathematics. For example, in geometry variety, Markov process, and invariant theory.  We introduce new equivalence relations on square matrices in terms of elementary divisors, and then describe derived equivalences for principal centralizer matrix algebras. The talk reports a recent work jointly with X.G. Li, see arXiv:2312.08794.

报告人简介:惠昌常,首都师范大学特聘教授,博士生导师,教育部长江学者特聘教授,博士毕业于联邦德国Bielefeld大学。曾获教育部科技进步奖、德国“年轻杰出学者洪堡奖”。

惠昌常教授长期从事代数学及相关方面的研究工作,在代数表示论、同调代数,导出范畴等方面取得了一系列出色的研究成果。在Adv.MathJ.Rein Ang.Math Math.AnnTrans.AMSProc.LMS等国际权威数学刊物发表论文90多篇。主持和参加多项国家自然科学基金重点项目。目前担任《Journal of Algebra》、《Archiv der Mathematik》等国际数学杂志编委。