The application of Hirota's bilinear method in the construction of rational and semi-rational solutions of integrable equations

发布者:王丹丹发布时间:2023-12-11浏览次数:10

江苏省应用数学(williamhill威廉希尔官网)中心系列学术报告

报告题目:The application of Hirota's bilinear method in the construction of rational and semi-rational solutions of integrable equations

报告人:虞国富,上海交通大学教授、博士生导师

报告时间:2023 12 1215:00-16:00

腾讯会议:会议 ID 539-524-8472

报告摘要:In this talk, we will present some review of the application of Hirota's bilinear method in the construction of rational and semi-rational solutions of integrbale equations. We investigate a special two-dimensional lattice equation proposed by Blaszak and Szum and so-called Leznov lattice based on the Hirota's  bilinear method. We derive solitons, breathers and rational solutions to the lattice equations both on the constant and periodic background. These solutions are given in terms of determinants whose matrix elements have simple algebraic expressions. We show that rational solutions are given  in terms of Schur polynomials and demonstrate that these rational solutions  exhibit algebraic solitons and lump solitons. We explore the asymptotic analysis to the algebraic solitons.

专家简介虞国富,上海交通大学数学科学学院教授、博士生导师。2007年博士毕业于中国科学院数学与系统科学研究院,加拿大蒙特利尔大学博士后,香港科技大学访问学者。主要从事可积系统、随机矩阵、正交多项式、特殊函数等方面的研究。在数学物理领域知名学术刊物Adv.Math.,  Ann. Henri PoincaréNonlinearity, JNS等发表SCI论文60余篇。主持国家自然科学基金、上海市晨光计划、上海交通大学晨星青年学者奖励计划等多项研究课题。